Metabolic activation of 4-ipomeanol by complementary DNA-expressed human cytochromes P-450: evidence for species-specific metabolism.
نویسندگان
چکیده
4-Ipomeanol is a pulmonary toxin in cattle and rodents that is metabolically activated by cytochromes P-450 (P-450s). P-450-mediated activation of 4-ipomeanol to DNA binding metabolites was evaluated using a vaccinia virus complementary DNA expression system and an in situ DNA-binding assay. Twelve human P-450s and two rodent P-450s were expressed in human hepatoma Hep G2 cells and examined for their abilities to metabolically activate this toxin. Three forms, designated CYP1A2, CYP3A3, and CYP3A4, were able to catalyze significant production of DNA-bound metabolites of 20-, 8-, and 5-fold, respectively, above binding catalyzed by Hep G2 cells infected with wild-type vaccinia virus. These enzymes, with highest activities, are not known to be expressed in human or rodent lung. CYP2F1 and CYP4B1, two enzymes that are expressed in lung, display only modest 3- and 2-fold respective increased abilities to metabolically activate 4-ipomeanol. Two human forms were inactive and seven other human forms showed activities ranging from 0.5- to 2-fold above control level. Surprisingly, rabbit complementary DNA-expressed CYP4B1 was the most active enzyme (180-fold above control) among all P-450s tested in producing DNA-binding metabolites from this mycotoxin. These studies demonstrate a species difference in 4-ipomeanol metabolism and suggest caution when attempting to extrapolate rodent data to humans.
منابع مشابه
Separation and purification of multiple forms of microsomal cytochrome P-450. Activities of different forms of cytochrome P-450 towards several compounds of environmental interest.
A new procedure has been devised for the separation and purification of the cytochromes P-450 from the hepatic microsomes of male rats, based upon the initial procedures of Imai and Sato (Imai, Y., and Sato, K. (1974) Riochem. Biophys. Res. Commun. 60, 8-14). Isolated fractions range in nominal specific content (nanomoles of cytochrome P-450 per mg of protein) from 6.8 to 15.4 for phenobarbital...
متن کاملMetabolic activation and cytotoxicity of 4-ipomeanol in human non-small cell lung cancer lines.
In the normal lungs of many animal species, 4-ipomeanol is transformed to a highly reactive metabolite preferentially in pulmonary bronchiolar Clara cells and to a lesser extent in alveolar type II cells, potentially leading to damage or destruction of these cell types. Since Clara cells and type II cells are suspected sites of origin of certain "non-small cell" lung cancers, the metabolic acti...
متن کاملDevelopment of a substrate-activity based approach to identify the major human liver P-450 catalysts of cyclophosphamide and ifosfamide activation based on cDNA-expressed activities and liver microsomal P-450 profiles.
The contributions of specific human liver cytochrome P-450 (CYP) enzymes to the activation, via 4-hydroxylation, of the oxazaphosphorine anticancer prodrugs cyclophosphamide (CPA) and ifosfamide (IFA) were investigated. Analysis of a panel of 15 human P-450 cDNAs expressed in human lymphoblasts and/or baculovirus-infected insect cells (Supersomes) demonstrated that CYPs 2A6, 2B6, 3A4, 3A5, and ...
متن کاملIn vitro metabolism of the analgesic bicifadine in the mouse, rat, monkey, and human.
The in vitro metabolism of [(14)C]bicifadine by hepatic microsomes and hepatocytes from mouse, rat, monkey, and human was compared using radiometric high-performance liquid chromatography and liquid chromatography/tandem mass spectrometry. Two main metabolic pathways were identified in all four species. One pathway was an NADPH-dependent pathway in which the methyl group was oxidized to form a ...
متن کاملProtection against chemical-induced lung injury by inhibition of pulmonary cytochrome P-450.
Protection afforded by trialkyl phosphorothionates against the lung injury caused by trialkyl phosphorothiolates probably results from the inhibition by the P = S moiety of the thionates, of one or more pulmonary cytochrome P-450 isozymes. The aromatic hydrocarbons p-xylene and pseudocumene also protect against this injury and inhibit some P-450 isozymes, but by a different mechanism. OOS-Trime...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 51 17 شماره
صفحات -
تاریخ انتشار 1991